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Abstract

A method is presented for generating a near-minimum-time control input for flexible structures with the
objective of minimizing the maneuver time and the residual energy of the flexible modes. The control design
is based on the time-optimal control for the rigid-body mode, which is a bang–bang control with one
switching time. The induced vibration due to control spillover to the flexible modes is eliminated through
the addition of a concentrated mass placed along the flexible element of the structure. The addition of a
concentrated mass at a certain distance along the flexible element of the structure results in a modification
of the dynamic characteristics of the structure so that the flexible modes are not excited by the bang–bang
control input. Numerical simulations as well as experimental results are provided to demonstrate and
validate the effectiveness of the proposed control design method.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been a considerable interest in modelling and control of flexible
structures. This is due to the use of lightweight materials for the purposes of speed and fuel
efficiency. Furthermore, many applications, such as robotic manipulators, disk drive heads and
pointing systems in space, are required to maneuver as quickly as possible without significant
structural vibrations during and/or after a maneuver.
The time-optimal control for general maneuvers and general flexible structures has posed a

challenging problem and is still an open area for research. In particular, the time-optimal control
for rest-to-rest slewing maneuvers of flexible structures has been an active area of research, and
only limited solutions have been reported in the literature. Solution to the time-optimal control
problem of a general flexible system is faced with two main obstacles. First, the number of control
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switching times is unknown a priori and must be guessed. Second, as the number of modes
included in the model is increased, the computer time required by these numerical techniques
becomes prohibitive.
In the recent literature, many researchers (see, e.g., Refs. [1–4]) and many others listed in the

review paper in Ref. [5] have developed computational techniques that deal with solving time-
optimal control of flexible structures. In all of these published works, the exact time-optimal
control input, which is of the bang–bang type, is calculated. From an implementation point of
view, the bang–bang type of control can easily excite the higher order modes that are neglected in
the model.
Other researchers have utilized the simplicity of the time-optimal control design for the rigid-

body mode to design a near-minimum-time control for the flexible structure. The main
difficulty in applying the minimum-time control input that is based on only the rigid-body mode
while neglecting all the flexible modes, is the vibration that takes place during and after the
maneuver as a result of control spillover to these modes. This has lead many researchers to
modify the bang–bang control input for the rigid-body mode in such a way so as not to excite
the flexible modes and, therefore, reduce the vibrations. Junkins et al. [6] and Hecht and
Junkins [7] have used an approximation function for the bang–bang control input with the
objective of eliminating the instantaneous transition of control magnitudes at a switching
time, resulting in a smoother control input. Hurtado and Junkins [8] have used soft constraints
in the performance measure that penalize both the weighted combination of elapsed time
and the first time-derivative of the control input resulting in a smooth near-minimum-time
control input. In a similar approach, Albassam [9] has modified the time-optimal control
problem for the rigid-body mode by adding hard constraints on the first and second time-
derivative of the control input to eliminate the sudden transition of control magnitudes at a
switching time, thereby resulting in a variety of smooth control functions that minimize the energy
transfer to the flexible modes. Recently, many researchers [10–12] have added point masses to a
beam driven by a harmonic external excitation to either confine or completely eliminate the beam
vibrations. These added masses can be thought of as simple reactions that provide transverse
forces to the beam.
This paper is concerned with the design of a minimum-time control input for a flexible

structure with one rigid-body mode and many flexible modes to perform a quick desired
maneuver. The objective is to perform a specified maneuver in minimum time while reducing
any residual vibrations at the end of the maneuver. The time-optimal control design is
based on only the rigid-body mode. This is motivated by the fact that the solution for the
minimum-time control design for the rigid-body mode is easy to calculate and results in the
minimum-time solution among the solutions when any of the flexible mode(s) are added to
the model.
The basic idea behind the approach of this paper is to change the saturation magnitude for the

control input and then select the control input magnitude that gives negligible residual vibrations
at the end of the maneuver. Furthermore, if the residual energy for a specified control saturation
magnitude is high, then a concentrated mass with a certain magnitude and distance can be
mounted along the flexible element in order to change the dynamic characteristics of the structure
so that the flexible modes are not excited by the bang–bang control input, resulting in low residual
energy.

ARTICLE IN PRESS

B.A. Albassam / Journal of Sound and Vibration 273 (2004) 755–775756



2. Mathematical modelling

A rigid hub with two flexible appendages as shown in Fig. 1 is considered. A single control
actuator at the center of the hub producing a torque uðtÞ is assumed to be the only input to the
system. To derive a mathematical model for this structure, the following are assumed:

1. Flexible appendages deform in an antisymmetric pattern.
2. Euler–Bernoulli beam model is used to represent the flexible appendages.
3. One control torque actuator acting on the center of the rigid hub.
4. Flexible appendage is inextensible, in the sense that the stretch of the neutral axis is negligible.
5. Bending foreshortening is neglected.

Consider a representative flexible appendage with tip and control masses as shown in Fig. 2.
The control mass is the added concentrated mass whose magnitude mc and position xc are
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Fig. 2. Deflection in a flexible appendage with rigid-body motion.
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determined to yield minimum post-maneuver energy. Two systems of co-ordinates are used to
describe the motion of any point on the flexible appendage. These are the right-handed inertial co-
ordinates represented by the unit vectors n1 and n2; while the unit vectors b1 and b2 describe the
right-handed body-fixed co-ordinates. The symbol x denotes the co-ordinate of a typical element
measured from the outer radius of the hub along the undeformed beam in the direction of the unit
vector b1: The local deformation yðx; tÞ is measured perpendicular to the b1-axis.
The inertial position vector R of a typical deformed point on any of the appendages is

R ¼ ðr þ xÞb1 þ yb2; ð1Þ

where r is the radius of the hub. The velocity of this point is given by

’R ¼ ðr þ xÞ’b1 þ ’yb2 þ y’b2; ð2Þ

where the over dot indicates differentiation with respect to time. Eq. (2) can be reduced, using
basic dynamics, to

’R ¼ �y’yb1 þ ½ðr þ xÞ’yþ ’y�b2; ð3Þ

where y is the angular displacement of the central hub. The extended Hamilton’s principle is used
to derive the system equation of motion. In its most general form, Hamilton’s principle is given by
the following variational statement:Z t2

t1

dðT � UÞ dt þ
Z t2

t1

dWnc dt ¼ 0; ð4Þ

where T is the kinetic energy, U is the potential energy, and Wnc is the work done by the non-
conservative forces and torques.
The system in Fig. 1 is comprised of four elements. These are the central hub, flexible

appendages, tip mass and control mass. Therefore, the kinetic energy T is given by

T ¼ Thub þ Tappendages þ Ttip mass þ Tcontrol mass; ð5Þ

where the kinetic energy of each element is given by

Thub ¼ 1
2
Jh
’y2;

Tappendage ¼
1

2

Z L

0

r ’R � ’R dx;

Ttip mass ¼ 1
2
mt

’RðLÞ � ’RðLÞ þ 1
2
Jtð’yþ ’y0ðLÞÞ2;

Tcontrol mass ¼ 1
2
mc

’RðxcÞ � ’RðxcÞ þ 1
2
Jcð’yþ ’y0ðxcÞÞ

2; ð6Þ

where ð Þ0 indicates differentiation with respect to x; Jh denotes the rotary inertia for the central
hub, r represents the appendage mass per unit length, mt and mc denote the tip and control mass,
respectively, while Jt and Jc denotes the rotary inertia for the tip and control mass, respectively.
The dot product of ’R � ’R is given by

’R � ’R ¼ ½ðr þ xÞ’yþ ’y�2 þ ðy’yÞ2: ð7Þ
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The system potential energy for the system is given by

U ¼
1

2

Z L

0

EIðy00Þ2 dx; ð8Þ

where E is the appendage Modulus of Elasticity and I is the moment of inertia of the appendage
cross-sectional area.
The virtual work done by the non-conservative forces and torques for the system in Fig. 1 is

given by

dWnc ¼ udy: ð9Þ

Upon using the assumed mode method [13], the elastic deformation of the flexible appendage can
be described as

yðx; tÞ ¼
Xn

i¼1

fiðxÞqiðtÞ; ð10Þ

where qiðtÞ denotes the ith generalized co-ordinate, fiðxÞ denotes the ith assumed mode shape
function which can be determined according to the boundary conditions and n represents the
number of flexible mode shapes. Admissible functions [13] for the clamped–free appendage
(clamped to the hub) that satisfy the geometrical boundary conditions are used as the assumed
mode shapes and are given by

fiðxÞ ¼ 1� cos
ipx

L

� �
þ 1

2
ð�1Þiþ1 ipx

L

� �2

: ð11Þ

Substituting Eq. (10) into Eqs. (5)–(8) and using the following Lagrange’s equations:

d

dt

@T

@’y

� �
�

@T

@y
þ

@U

@y
¼ u;

d

dt

@T

@ ’qi

� �
�

@T

@qi

þ
@U

@qi

¼ 0; i ¼ 1;y; n ð12Þ

the equations of motion can be derived to yield the following matrix form:

myy myq

mqy mqq

" #
.y

.q

( )
þ

0 01
n

0n
1 kqq

" #
y

q

( )
þ

qTNq.yþ 2’qTNq’y

�Nq’y2

( )
¼

u

0n
1

( )
; ð13Þ

where ð�ÞT denotes the transpose of ð�Þ; and myy is a scalar, myq is 1
 n vector, mqy is n 
 1 vector,
and mqq; kqq; and N are n 
 n matrices, which are defined as follows:

myy ¼
Z L

0

rðr þ xÞ2 dx þ Jh þ mtðr þ LÞ2 þ Jt þ mcðr þ xcÞ
2 þ Jc;

myqð1; iÞ ¼
Z L

0

rðr þ xÞfi dx þ mtðr þ LÞfiðLÞ þ Jtf
0
iðLÞ

þ mcðr þ xcÞfiðxcÞ þ Jcf
0
iðxcÞ;
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mqy ¼ mT
yq;

mqqði; jÞ ¼
Z L

0

rfifj dx þ mtfiðLÞfjðLÞ þ Jtf
0
iðLÞf

0
jðLÞ þ mcfiðxcÞfjðxcÞ

þ Jcf
0
iðxcÞf

0
jðxcÞ;

kqqði; jÞ ¼
Z L

0

EIf00
i f

00
j dx;

Nði; jÞ ¼
Z L

0

rfifj dx þ mtfiðLÞfjðLÞ þ mcfiðxcÞfjðxcÞ: ð14Þ

The above non-linear dynamic equations of motion provide a relatively accurate mathematical
description of the system motion and can be used for simulation purposes. However, due to the
non-linearity, this model usually imposes severe constraints on the design of controllers [14].
Therefore, it is desirable to develop a linear and finite dimensional model for controller design and
implementation purposes. Under the assumption of small appendage deflection ðyðL; tÞ=Lo0:1Þ;
the linearized model is obtained by setting all the non-linear terms in Eqs. (13) to zero [15,16] and
can be expressed as

M.zþ Kz ¼ Du; ð15Þ

where z ¼ ½y q1 q2 y qn�T and D ¼ ½1 0 0y0�T are ðn þ 1Þ 
 1 vectors and M and K are
ðn þ 1Þ 
 ðn þ 1Þ mass and stiffness matrices, respectively, and defined as

M ¼
myy myq

mqy mqq

" #
and K ¼

0 0

0 kqq

" #
: ð16Þ

3. Bang–bang control input

In this section, a control input uðtÞ is designed for the system in Eq. (15) to perform a rest-to-
rest maneuver from the initial condition zð0Þ ¼ ½0 0y0�T to the final condition zðtf Þ ¼
½yf 0 0y0�T and in minimum time. From optimal control theory, it is known that the control
input structure is of the bang–bang type, which can be characterized by its switching times. Many
researchers (see, e.g., Ref. [1]) have utilized this characteristic to develop numerical techniques
that transfer the time-optimal control problem into parameter optimization problem in terms of
the control switching times. They have also noted that as the number of flexible modes in the
model increases, the number of control switching times also increases, thereby, making the
optimal control problem more difficult, or impossible, to solve, especially, when the number of
modes becomes quite large. On the contrary, the problem becomes very simple when only the
rigid-body mode is considered in the model. In this case, the control input is shown in Fig. 3,
which is a bang–bang control input that can be characterized by only one switching time ts1 and a
final time tf : The control input uðtÞ; shown in Fig. 3, is constrained according to

�umaxpuðtÞpumax: ð17Þ
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The system in Eq. (15) can be transformed into the decoupled modal equations using the
eigenvectors of the system to the form

.b ¼ a0u; ð18Þ

.Zi þ o2
i Zi ¼ aiu; i ¼ 1;y; n; ð19Þ

where bðtÞ is the rigid-body co-ordinate, ZiðtÞ is the ith modal co-ordinate, and oi is the ith
frequency. The scalars ai; i ¼ 0;y; n are defined by

½a0 a1 y an�T ¼ UTD; ð20Þ

where U is the matrix of eigenvectors.
The initial and final conditions, zð0Þ and zðtf Þ; can also be transformed to the modal

co-ordinates as

½bð0Þ Z1ð0Þ y Znð0Þ�
T ¼ UTMzð0Þ; ð21Þ

½bðtf Þ Z1ðtf Þ y Znðtf Þ�T ¼ UTMzðtf Þ: ð22Þ

Analytical solutions for the control switching and final times do exist in the literature (see, e.g.,
Ref. [17]) and are given by

ts1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðtf Þ

umaxa0

s
; ð23Þ

tf ¼ 2ts1: ð24Þ

4. Numerical examples

4.1. Example 1

As an example to illustrate the numerical procedure and show its effectiveness, the time-optimal
single-axis maneuver problem for a system consisting of a rigid hub with two uniform elastic
appendages attached to it as shown in Fig. 1 is considered. A single actuator that exerts an
external torque on the rigid hub controls the motion of the system. It is desired to rotate the
flexible structure by a certain angular displacement as quickly as possible while suppressing the
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vibration at the end of the maneuver to achieve good pointing accuracy. The above design method
is applied to a relatively small and large size flexible structures. The first one has the material
properties, dimensions and maneuver specifications listed in Table 1. The data are taken from
Ref. [13, p. 190] with slight modifications. Ten flexible modes are retained in the evaluation model
making the size of the mass and stiffness matrices, in Eq. (15), 11
 11:
If the bang–bang control input for the rigid-body mode is applied to the structure in Table 1

while changing the maximum control magnitude and without the addition of control mass,
the variation of the residual energy versus the maximum control magnitude umax is shown in
Fig. 4. As seen from this figure, if the maximum control magnitude umax is approximately 3 N m
or in the range between 12 and 13 N m; then the bang–bang control input for the rigid-body
mode can be applied without considering the flexible modes and should not expect any
vibrations at the end of the maneuver. On the contrary, if the maximum control magnitude umax is
equal to 6 or 20 N m; then the rigid hub would oscillate at the end of the maneuver leading to
imprecise maneuvering. The rigid hub attitude simulations for two different maximum control
magnitudes, umax ¼ 11:65 and 20 N m; are shown in Fig. 5. The corresponding maneuver times,
tf ; are 3.1993 and 2:4418 s; respectively. Using Fourier analysis, the first three frequencies in the
two bang–bang control input signals are calculated and shown in Table 2 along with the first three
flexible modes natural frequencies of the system. Clearly, the bang–bang control input with
control saturation magnitude umax ¼ 11:65 N m has frequencies that are farther away from the
natural frequencies of the system compared with the case when the control saturation magnitude
umax ¼ 20 N m:
If the actuator available can only supply a maximum control magnitude umax equal to 20 N m;

then a concentrated mass (or point mass) may be added with a magnitude mc and position xc

along the appendage in order to modify the dynamic characteristics of the structure so that the
bang–bang control input for the rigid-body mode does not excite the flexible modes, thus,
resulting in almost zero residual energy. A Matlabs program is written to calculate the residual
energies for a given range of control mass magnitudes mc and position xc: An output of this
program is shown in Fig. 6 for mc ¼ 0y5 kg; xc ¼ 0y2 m and umax ¼ 20 N m: As seen from this
figure, many combinations of mass magnitudes and positions can be chosen that result in
negligible residual energies. It is obvious that our selection should be based on the combinations
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Table 1

System dimensions, appendage material, and maneuver specifications

Radius of the rigid central hub, r 0:3048 m

Length of one appendage, L 2 m

Appendage material Young’s modulus, E 7:5842
 1010 N=m2

Appendage width 3:175
 10�3 m

Appendage height 0:1524 m

Cross-section moment of area, I 4:0648
 10�10 m4

Appendage material density, r 1:3017 kg=m
Command slew angle, yf 40:00�

Hub rotary inertia 10:8465 kg m2

Tip mass, mt 2 kg

Tip rotary inertia, Jt 0:0024 kg m2
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of mass magnitude and position resulting in the lowest possible maneuver time. Therefore, a
control mass magnitude mc ¼ 4:2 kg and position xc ¼ 1:6 m can be chosen and the
corresponding rigid hub attitude simulation with and without the control mass is shown in
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Fig. 4. Residual energies corresponding to maximum control magnitude variations.
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Fig. 5. Rigid hub attitude simulations for maximum control magnitudes umax ¼ 11:65 N m (solid line, tf ¼ 3:1993 s;
residual energy ¼ 0:0045 J) and umax ¼ 20 N m (dotted line, tf ¼ 2:4418 s; residual energy ¼ 2:2604 J).
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Fig. 7. In this case, the maneuver time is equal to 3:1965 s: The added control mass amounts to
only 3.5% of the total mass of the structure. The rigid hub attitude simulation in Fig. 7 shows a
significant post-maneuver energy reduction when the control mass is added to the system
at the expense of 31% increase in maneuver time. Using Fourier analysis, the first three
frequencies in the two bang–bang control inputs, with and without the addition of a control mass,
are calculated and are shown in Table 3, along with the first three flexible modes natural
frequencies of the system. Clearly, the addition of a control mass lowered the frequencies in
the control input signal compared with the case of no control mass addition and, therefore,
widened the gap between the control input signal frequencies and the natural frequencies of the
system, resulting in a reduced level of flexible modes excitation. The strength of this control design
method can also be evidenced from Fig. 8, which shows the time simulation of the tip position
defined by [18]

TP ¼ LyðtÞ þ yðL; tÞ; ð25Þ

where TP stands for tip position in (m).
If the designed bang–bang control input for the rigid-body mode with the control mass is

applied to the non-linear system model, Eq. (13), then the effect of addition of the control mass
ðmc ¼ 4:2 kg; xc ¼ 1:6 mÞ on the rigid hub attitude is shown in Fig. 9. The addition of the control
mass has reduced the post-maneuver energy for the non-linear system by 93% at the expense of
31% increase in maneuver time. Furthermore, the tip mass position for the non-linear system
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Table 2

First three natural frequencies, in Hz, for the system and frequencies in the control signals for umax ¼ 11:65 and 20 N m

System natural frequencies 0.633 3.287 9.860

umax ¼ 11:65 N m 0.313 0.938 1.563

umax ¼ 20 N m 0.410 1.229 2.048
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model, when the bang–bang control input for the rigid-body mode is applied, is shown in Fig. 10
both with and without adding the control mass. As a result of the addition of the control mass, the
tip mass position residual vibration amplitude has been reduced by 88%. The slight disagreement
between the linear and non-linear system model behaviors is attributed to the large tip mass
deflection that is larger than 0:1L; which is the maximum tip mass deflection allowed to neglect the
non-linear terms in Eq. (13).

4.2. Example 2

In this example, a rigid hub with two flexible appendages having a size that is relatively larger
than that considered in Example 1 is considered. Table 4 lists the material properties, dimensions,
and maneuver specifications for the system. It is desired to select the control mass magnitude mc

and position xc to perform a rapid 45� maneuver with negligible residual energy. The residual
energy variation as the control mass magnitude and position take the values mc ¼ 0y10 kg and
xc ¼ 0y20 m; respectively, is shown in Fig. 11. As seen from this figure, many combinations of
control mass magnitudes and positions can be selected to yield negligible residual energies.
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Fig. 7. Rigid hub attitude simulations without control mass (dotted, tf ¼ 2:4418 s; residual energy ¼ 2:2604 J) and with

control mass (solid, mc ¼ 4:2 kg; xc ¼ 1:6 m; tf ¼ 3:1965 s; residual energy ¼ 0:0007 J) for the linear model.

Table 3

First three natural frequencies, in Hz, for the system and frequencies in the control signal for umax ¼ 20 N m with and

without control mass

System natural frequencies (Hz) 0.633 3.287 9.860

umax ¼ 20 N m (without control mass) 0.410 1.229 2.048

umax ¼ 20 N m (with control mass) 0.313 0.939 1.564
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Selecting the combination with the lowest possible value of control mass magnitude and position,
mc ¼ 1:7 kg and xc ¼ 11:2 m; results in the rigid hub attitude simulation shown in Fig. 12. The
corresponding maneuver times are equal to 3.7719 and 5:4887 s both without and with control
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Fig. 9. Rigid hub attitude simulations without control mass (dotted, tf ¼ 2:4418 s; residual energy ¼ 3:3505 J) and with

control mass (solid, mc ¼ 4:2 kg; xc ¼ 1:6 m; tf ¼ 3:1965 s; residual energy ¼ 0:0676 J) for the non-linear model.

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (sec)

T
ip

 P
os

iti
on

 (
m

)

Fig. 8. Tip mass position simulations without control mass (dotted) and with control mass (solid, mc ¼ 4:2 kg and

xc ¼ 1:6 m) for the linear model.
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mass, respectively. The added mass magnitude amounts to only 0.85% of the total mass of the
structure. The addition of the control mass has almost eliminated the post-maneuver energy at
the expense of 45% increase in maneuver time. The tip mass positions both with and without the
addition of the control mass are shown in Fig. 13.
If the designed bang–bang control input for the rigid-body mode with the control mass is

applied to the non-linear system model, Eq. (13), then the effect of addition of the control mass
ðmc ¼ 1:7 kg; xc ¼ 11:2 mÞ on the rigid hub attitude is shown in Fig. 14. The addition of
the control mass has reduced the post-maneuver energy for the non-linear system by 99% at the
expense of 45% increase in maneuver time. Furthermore, the tip mass position resulting
from the non-linear model is shown in Fig. 15 for both with and without the control mass.
As a result of the addition of the control mass, the tip mass position residual vibration
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Fig. 10. Tip mass position simulations without control mass (dotted) and with control mass (solid, mc ¼ 4:2 kg and

xc ¼ 1:6 m) for the non-linear model.

Table 4

System dimensions, appendage material, and maneuver specifications

Radius of the rigid central hub, r 1:00 m

Length of one appendage, L 20:00 m

Appendage material stiffness, EI 1500:00 N m2

Appendage material density, r 0:04096 kg=m
Mass of the rigid central hub 400:00 kg

Command slew angle, yf 45:00�

Total rotational inertia, J� 2081:97547 kg m2

Maximum torque available, umax 100 N m
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amplitude has been reduced by 94%. As in Example 1, the slight disagreement between the linear
and non-linear system model behaviors is attributed to the large tip mass deflection that is larger
than 0:1L; which is the maximum tip mass deflection allowed to neglect the non-linear terms in
Eq. (13).
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Fig. 11. Residual energies corresponding to control mass and distance variations.
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Fig. 12. Rigid hub attitude simulations without control mass (dotted, tf ¼ 3:7719 s; residual energy ¼ 9:4356 J)

and with control mass (solid, mc ¼ 1:7 kg; xc ¼ 11:2 m; tf ¼ 5:4887 s; residual energy ¼ 0:00047 J) for the linear

model.
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Fig. 13. Tip mass position simulations without control mass (dotted) and with control mass (solid, mc ¼ 1:7 kg and

xc ¼ 11:2 m) for the linear model.
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Fig. 14. Rigid hub attitude simulations without control mass (dotted, tf ¼ 3:7719 s; residual energy ¼ 11:0163 J)

and with control mass (solid, mc ¼ 1:7 kg; xc ¼ 11:2 m; tf ¼ 5:4887 s; residual energy ¼ 0:0718 J) for the non-linear

model.
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5. Experimental analysis

5.1. Experimental set-up

The experimental set-up is shown in Fig. 16. The flexible link is a slender beam made of stainless
steel. The physical parameters of the experimental set-up and the associated sensors and actuators
specifications are listed in Table 5. One end of the flexible link is clamped to a solid clamping
fixture, which is driven by a high quality DC servomotor. The DC servomotor drives a built-in
gearbox ðN ¼ 14 : 1Þ whose output drives an anti-backlash gear. The anti-backlash gear, which is
equipped with a precision optical encoder to measure the flexible link base angle, is utilized to
eliminate the backlash. The anti-backlash gear is connected to a larger gear with gear ratio 5 : 1 so
that the angular displacement of the flexible link is further reduced. The tip deflection is measured
using a strain gage mounted at the clamped end of the flexible link and is calibrated to generate
one volt per one inch of tip deflection.
The DC servomotor is modelled as a standard armature circuit and the generated torque uðtÞ

can be related to the input voltage VaðtÞ as [19]

uðtÞ ¼ N
Km

Ra

VaðtÞ � N2Ih
.y� N2 KmKb

Ra

þ cv

� �
’y; ð26Þ

where N is the total gear ratio and is equal to 14
 5 : 1; Km is the motor torque constant, Ra is the
armature resistance, Ih is the base inertia, Kb is the motor back emf constant and cv is the viscous
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Fig. 15. Tip mass position simulations without control mass (dotted) and with control mass (solid, mc ¼ 1:7 kg and

xc ¼ 11:2 m) for the non-linear model.
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damping in the motor. Eq. (26) can be substituted into Eq. (15) and the resulting uncoupled
equations of motion for a one rigid-body mode and one flexible mode can be given as

.bþ b0 ’b ¼ a0Va;

.Zþ b11 ’Zþ b12Z ¼ a1Va: ð27Þ

It is worth mentioning that the damping terms in Eqs. (27) are a result of the viscous damping in
the motor. The time-optimal, bang–bang control input voltage applied to the motor, considering
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Table 5

Physical parameters for the experimental set-up

Flexible link DC servo motor Optical

encoder

Young’s modulus E ¼ 207
 109 N=m2 Motor back Kb ¼ 0:00767 V=rad=s Encoder 4096 counts

EMF constant resolution per revolution

Thickness b ¼ 82 mm

Height h ¼ 20:72 mm Motor torque

constant

Km ¼ 0:00767 N m=amp

Length L ¼ 0:4318 m

Mass per unit length r ¼ 0:135 kg=m Armature resistance Ra ¼ 2:6 O
Base inertia Ih ¼ 0:002 kg m2

Tip mass mt ¼ 0:1 kg Equivalent viscous Beq ¼ 0:004 N m/(rad/s)

damping coefficient

Tip inertia It ¼ 0:0003 kg m2

Gearbox ratio N ¼ 70 : 1

flexible linkInterfacing board

amplifier

Clamping fixture 
And solid frame

tip mass

control mass

Fig. 16. Experimental set-up.

B.A. Albassam / Journal of Sound and Vibration 273 (2004) 755–775 771



only the rigid-body mode, the first equation in Eqs. (27), can be defined by calculating its
switching and final times which are given by [17]

ts1 ¼
1

b0
ln 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp �

b20
a0Va max

bðtf Þ
� �s !

þ
b0

a0Va max

bðtf Þ;

tf ¼
2

b0
ln 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp �

b2
0

a0Va max

bðtf Þ
� �s !

þ
b0

a0Va max

bðtf Þ; ð28Þ

where Va max denotes the magnitude of the applied voltage to the motor and bðtf Þ can be
calculated using Eq. (22).

5.2. Experimental results

In this experiment, the flexible link base angular displacement and the tip deflection are to be
measured, while the input signal is the applied voltage to the DC servomotor. The inputs and
outputs from the experimental set-up are controlled through an 800 MHz; Pentium 4 PC
computer. The computer is equipped with a data acquisition and control board (DACB) that
contains 16 A/D channels, 8 D/A channels and 6 channels for digital encoder signals. The control
voltage to the motor is applied through a digital signal processor (DSP) with sampling rate of
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Fig. 17. Control algorithm implementation using Simulinks:
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100 Hz: The data are also recorded at the rate of 100 Hz: The control algorithm is written in
Simulinks and is shown in Fig. 17.
The mass and stiffness matrices, for the linear model in Eq. (15), are calculated as described in

Section 2 using only one rigid-body mode and one flexible mode. The numerical and experimental
rigid hub responses for a maximum applied voltage of 5 V and a maneuver of 90� are shown in
Fig. 18. The close agreement between the two responses indicates an accurate mathematical
model, and hence, a reliable calculation of the position and magnitude of the control mass can be
obtained. A Matlabs program is developed that calculates the control mass position and
magnitude that results in the minimum residual energy. The magnitude of the control mass, due to
weight limitations of the experimental set-up, is limited to 0:5 kg: Therefore, the control mass
magnitude is 0:5 kg while the calculated position is 0:264 m measured from the clamped end of the
flexible link. The resulted residual energy has been reduced by 56% from 0.6801 to 0:2991 J for the
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Fig. 19. Tip deflection obtained experimentally for the two cases: without and with control mass.
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two cases without and with control mass, respectively. Consequently, the maneuver time has
increased by 54% from 0.4675 to 0:7204 s for the two cases without and with control mass,
respectively. The tip deflection for the cases without and with control mass, obtained
experimentally, is shown in Fig. 19. As seen from this figure, the addition of the control mass
has completely eliminated the vibration of the flexible link at the tip.

6. Conclusions

In this paper, a non-linear differential equations model is derived for a flexible structure
comprising of a rigid hub with two elastic appendages, a tip mass and a control mass. The model
is then linearized for controller design and implementation purposes. The control mass is a
concentrated mass added to the system with the purpose of modifying the dynamic characteristics
of the whole structure so that the application of the bang–bang control input for the rigid-body
mode results in a negligible post-maneuver energy. In this way, the minimum-time property and
simplicity of the bang–bang control input of the rigid-body mode are utilized while reducing the
control spillover to the neglected flexible modes. A Matlabs program is written to assist in the
selection of the control mass magnitude and position that results in negligible post-maneuver
energy. To show the effectiveness of the design technique, the procedure is applied to both small
and large size flexible structures, in which the control design method is able to eliminate the
residual energy due to control spillover to the flexible modes at the expense of slight increase in
maneuver time due to the addition of the concentrated mass. Experimental set-up has been
developed to validate the derived mathematical model. The elimination of vibrations at the tip of
the flexible link shown by experimental results proves the effectiveness of the control design
method.
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